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Abstract

The scattering properties of arbitrarily shaped microstrip patch

antennas are examined. The electric �eld integral equation for a

current element on a grounded dielectric slab is developed for a

rectangular geometry based on Galerkin's technique with subdomain

rooftop basis functions. A shape function is introduced that allows a

rectangular grid approximation to the arbitrarily shaped patch. The

incident �eld on the patch is expressed as a function of incidence

angle �i; �i. The resulting system of equations is then solved for

the unknown current modes on the patch, and the electromagnetic

scattering is calculated for a given angle. Comparisons are made

with other calculated results as well as with measurements.

Introduction

In the early 1980's, the moment method technique was developed for analyzing microstrip

patch antennas by using the spectral domain Green's function. This technique accurately

accounts for dielectric thickness, dielectric losses, and surface wave losses and can be extended

to include the e�ects of a cover layer with a di�erent dielectric constant on top of the antenna.

Because of its spectral nature, the technique can be easily extended to model an in�nite array

of patches by the examination of only a single unit cell.

Early papers on this subject include those by Bailey and Deshpande (refs. 1 to 3) and

Pozar (ref. 4). In those papers the authors used both subdomain and entire-domain basis

functions to model the current on the patch. Results such as bandwidth, input impedance,

and resonant frequency were presented for rectangular patches. The use of subdomain basis

functions yields more 
exibility in the modeling of the patch current, whereas the use of entire-

domain basis functions yields a smaller number of unknowns in the solution. For this reason,

many subsequent analyses involve entire-domain basis functions that are limited to canonical

shapes such as rectangles, circles, and ellipses. Using entire-domain basis functions, Pozar and

Schaubert (ref. 5) extended the method from a single patch to an in�nite array of patches.

Aberle and Pozar (refs. 6 and 7) analyzed circular microstrip patch antennas, in both single

and array geometries, using entire-domain basis functions. Bailey and Deshpande (ref. 8) also

used entire-domain basis functions in their study of elliptical and circular patches. Aberle and

Pozar (refs. 9 and 10) have improved on the original idealized probe feed model by including

attachment modes of current that accurately model the current singularity at the probe feed

point.

Recently, much work has been published regarding the scattering properties of microstrip

antennas on various types of substrate geometries. Virtually all this work has been done with

entire-domain basis functions for the current on the patch. Newman and Forrai (ref. 11) have

analyzed the electromagnetic scattering from a rectangular patch. Jackson (ref. 12) extended

this research to include a superstrate covering the antenna. Pozar (ref. 13) examined a patch

on a uniaxial substrate. Aberle, Pozar, and Birtcher (ref. 14) included the improved probe feed

model for analyzing the scattering from circular patches.

Some work has been published concerning the use of subdomain basis functions for modeling

the current on the patch antenna. Most of this work was done in the spatial domain and

cannot be extended to in�nite arrays as in the spectral domain approach. Hall and Mosig

(refs. 15 and 16) have analyzed rectangular microstrip antennas using a mixed-potential integral

equation with subdomain rooftop basis functions. Mosig (ref. 17) has also used this approach



to analyze patch antennas of arbitrary shape. Michalski and Zheng (ref. 18) have used a similar
formulation with triangular-surface patch basis functions, which are similar to �nite element
techniques, to model patches of arbitrary shape. Martinson and Kuester (ref. 19) have used a
network approach along the edge of the patch to examine di�erent shapes. As with the spatial
domain method, this approach is not easily extended to array geometries. Hansen and Janhsen
(ref. 20) have outlined a spectral domain approach that uses subdomain basis functions for
modeling rectangular patches with a microstrip line-feed network.

This paper describes spectral domain analyses of arbitrarily shaped microstrip patch antennas
in which subdomain basis functions are used to model the patch current. To simplify the analyses,
the antenna feed will not be considered. The antenna is considered to be open circuited from the
feed network (i.e., the feed impedance is in�nite). Results are presented in the form of scattering
as a function of frequency for a few representative shapes. Comparisons are made with measured
data and with results from other analysis techniques.

Symbols

d thickness of the dielectric slab

Eb electric �eld radiated by a current element on the patch

E�
b� component of the electric �eld

E�
b� component of the electric �eld

E
inc
tan tangential components of the incident electric �eld

E
scat
tan

tangential components of the scattered electric �eld

Fmn Fourier transform of current mode mn

$

G dyadic Green's function

Gab(x; y; z) component of the spatial domain Green's function

Gab(Kx; Ky;z) component of the spectral domain Green's function

Imn amplitude of mode mn

J surface current on the microstrip patch antenna

j =
p
�1

K; � variables of integration in cylindrical coordinates

Ko propagation constant for free space, 2�=�o

Kx spectral domain transformation variable for the x-direction

Ky spectral domain transformation variable for the y-direction

K1 propagation constant for the dielectric slab in the z-direction

K2 propagation constant for free space in the z-direction

Lx dimension of the patch in the x-direction

Ly dimension of the patch in the y-direction

M number of subdivisions in the x-direction

N number of subdivisions in the y-direction
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Te characteristic equation for transverse electric modes

Tm characteristic equation for transverse magnetic modes

V pq component of excitation voltage vector

x; y; z coordinates of the �eld point

xm; yn coordinates of the current mode mn

xo; yo; zo coordinates of the source point

bx unit vector in the x-direction

by unit vector in the y-direction

Z impedance matrix to be solved

Zo impedance of free space, 377 ohms

bz unit vector in the z-direction

� =
q
K2
x +K2

y

�x cell size in the x-direction

�y cell size in the y-direction

"r relative permittivity of the dielectric slab

�i; �i incident angle of electromagnetic wave

� piecewise linear function for the current on the patch

�o permeability of free space

� pulse function for the current on the patch

��� b� polarized backscatter from b� polarized incident �eld

! frequency of the electromagnetic �eld, rad

Abbreviation:

dBsm a unit denoting decibels referenced to square meters

Theory

The geometry of a rectangular microstrip patch antenna is shown in �gure 1. The patch is
on a grounded dielectric slab of in�nite extent. The dielectric slab has a relative permittivity "r
and thickness d. Assuming that the patch is perfectly conducting, the boundary condition on
the patch is given by

Einc
tan = �Escat

tan (1)

The incident �eld is the �eld at the patch location attributable either to an incident plane wave
or a probe or stripline feed. The scattered �eld is found from the currents excited on the patch
as

Escat (x; y; z) =

ZZZ
$

G (x; y; zjxo; yo; zo) � J (xo; yo; zo)dxodyodzo (2)

where
$

G is the dyadic Green's function for a current element on a grounded dielectric slab and
J is the electric current density for the unknown vector on the patch. The dyadic Green's
function can be written as

$

G = bxGxxbx+ bxGxyby+ bxGxzbz+ byGyxbx+ byGyyby + byGyzbz+ bzGzxbx+ bzGzyby+ bzGzzbz (3)
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where

Gab =
1

4�2

Z
1

�1

Z
1

�1

eGab

�
Kx; Ky; zjzo

�
exp [jKx (x� xo)] exp

�
jKy (y � yo)

�
dKxdKy (4)

and a and b can be x; y, or z. Note that the components for the Green's function eGab are known
in the spectral domain and must be transformed back to the x; y domain; hence, the two in�nite
integrals in equation (4) are required.

The components of the Green's function are given by

eGxx

�
Kx; Ky; djd

�
=
�jZo
Ko

K1K2K
2
xTe +K

2
oK

2
yTm

�2TmTe

sin (K1d) (5)

eGxy

�
Kx; Ky; djd

�
=
�jZo
Ko

KxKy

�
K

2
o
Tm �K1K2Te

�
�2TmTe

sin (K1d) (6)

eGyx

�
Kx; Ky; djd

�
= eGxy

�
Kx; Ky; djd

�
(7)

eGyy

�
Kx; Ky; djd

�
=
�jZo
Ko

K1K2K
2
y
Te +K

2
o
K

2
x
Tm

�2TmTe

sin (K1d) (8)

eGzx =
�jZo
Ko

KxK1

Tm

sin (K1d) (9)

eGzy =
�jZo
Ko

KyK1

Tm

sin (K1d) (10)

where

Tm = "rK2 cos (K1d) + jK1 sin (K1d) (11)

Te = K1 cos (K1d) + jK2 sin (K1d) (12)

K1 =

q
"rK

2
o
� �2 Im (K1) � 0 (13)

K2 =

q
K2
o
� �2 Im (K2) � 0 (14)

� =
q
K2
x +K2

y (15)

The remaining terms of the Green's function are not needed in this analysis. Details of the
derivation of the Green's function can be found in reference 3. Additional forms of the Green's
function that include the e�ects of a dielectric cover layer above the antenna are available in
reference 10.

4



The current density J is modeled as a summation of piecewise linear subdomain basis
functions known as rooftop basis functions. This approach contrasts with use of the entire-
domain basis functions that span the entire patch. Entire-domain basis functions, such as sines
and cosines, are useful for analyzing rectangular or circular patches, but become cumbersome for
other shapes. Mathematically, the subdomain basis functions for the components of the current
are described as

Jx(x; y) =

MX
m=1

N+1X
n=1

Imnx �m (x) �n (y) (16)

Jy(x; y) =

M+1X
m=1

NX
n=1

Imny �n (y)�m (x) (17)

where the functions � and � are \triangle" and \pulse" and are expressed as

�m (x) =

8><
>:
1 + (x� xm) =�x (xm ��x) � x � xm

1� (x� xm) =�x xm � x � (xm +�x)

0 Otherwise

9>=
>; (18)

�n (y) =

(
1 (yn ��y) � y � yn

0 Otherwise

)
(19)

where �x = 2Lx=(M + 1) and �y = 2Ly=(N + 1).

When equations (2) and (4) are combined, the order of integration may be changed and the
basis functions that represent the patch current density may be taken into the transform domain.
These current density functions for the spectral domain are given by

eJx �Kx; Ky

�
=

MX
m=1

N+1X
n=1

Imnx Fmnx

�
Kx; Ky

�
(20)

eJy �Kx; Ky
�
=

M+1X
m=1

NX
n=1

Imny Fmny

�
Kx; Ky

�
(21)

where

Fmnx (Kx;Ky) = �x�y

�
sin (Ky�y=2)

Ky�y=2

��
sin (Kx�x=2)

Kx�x=2

�2
exp [�jKxxm� jKyyn+ jKy (�y=2)] (22)

Fmn
y

(Kx;Ky) = �x�y

�
sin (Ky�y=2)

Ky�y=2

�2�
sin (Kx�x=2)

Kx�x=2

�
exp [�jKxxm� jKyyn+ jKx(�x=2)] (23)

Galerkin's method can be applied to the resulting equations to test them with the same set
of basis functions. The solution yields a set of simultaneous equations that can be solved with
standard techniques. Symbolically, this approach is represented as

ZZ
S
J
pq �Einc

tan dxdy = �

ZZ
S
J
pq �Escat

tan dxdy (24)
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Note that the integration is over x and y instead of xo and yo. On the right side of equation (24)
the x; y integration may be performed. The resulting Fourier transforms are similar to those
described in equations (22) and (23). These equations can be shown in matrix notation as

"
V
pq
x

V
pq
y

#
=

"
Z
pqmn
xx Z

pqmn
xy

Z
pqmn
yx Z

pqmn
yy

#"
Imn
x

Imn
y

#
(25)

where the impedance matrix terms are given by

Zpqmn
xx

=
�1

4�2

Z
1

�1

Z
1

�1

eGxx

�
Kx;Ky; djd

�
Fmn

x

�
Kx;Ky

�
F pq

x

�
�Kx;�Ky

�
dKxdKy (26)

Zpqmn

xy =
�1

4�2

Z
1

�1

Z
1

�1

eGxy

�
Kx;Ky; djd

�
Fmn

y

�
Kx;Ky

�
F pq

x

�
�Kx;�Ky

�
dKxdKy (27)

Zpqmn

yx =
�1

4�2

Z
1

�1

Z
1

�1

eGyx

�
Kx;Ky; djd

�
Fmn

x

�
Kx;Ky

�
F pq

y

�
�Kx;�Ky

�
dKxdKy (28)

Zpqmn

yy
=

�1

4�2

Z
1

�1

Z
1

�1

eGyy

�
Kx;Ky; djd

�
Fmn

y

�
Kx;Ky

�
F pq

y

�
�Kx;�Ky

�
dKxdKy (29)

The integrations in equations (26){(29) must be done numerically but can be simpli�ed with
the following change of variables:

Kx = K cos� Ky = K sin� (30)

With this change of variables, the integrals are changed to the form

Z
1

�1

Z
1

�1

[ ]dKxdKy =

Z
2�

0

Z
1

0

[ ]KdKd� (31)

The integration from 0 to 2� may be further reduced to an integration from 0 to �=2 based on
the even and odd properties of the integrand. Each of the four submatrices in the impedance
matrix is of Toeplitz form, so only the �rst row of each submatrix needs to be calculated by
numerical integration. The remaining terms can be �lled in with these terms. Furthermore,
because the impedance matrix terms Z

pqmn
xy = Z

mnpq
yx , even more computer time is saved.

To examine the scattering from a microstrip patch antenna, the left side of equation (25)
must be evaluated. Each member of the excitation vector can be written as

V pq =

ZZ
S
J
pq

�E
inc dxdy (32)

which is the incident �eld reacted with each pq current mode on the patch. After we use
reciprocity, equation (32) can be rewritten as

V pq =
�4�Epq �Eo

j!�o
(33)
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In equation (33), Eo is the vector amplitude of the incident plane wave, Epq is the far-�eld
radiation from vector current mode pq on the patch, and �4�=j!�o is the required strength
of an in�nitesimal dipole source to produce a unit amplitude plane wave. The incident plane
wave is from the direction �i; �i in spherical coordinates with components E� and E�. Typical
scattering results are of the form

��� = 4�r2 jEscat
� j

2 (34)

which is the b� polarized backscatter from a unit amplitude b� polarized incident �eld.

The �elds radiated by a current mode on the patch can be found from the Green's function
(see eq. (5)). The �eld at the point x; y; z from an bx directed source located at the point xo; yo; d
is given by

Eb (x; y; z) =
1

4�2

Z
1

�1

Z
1

�1

eGbx exp [jKx (x� xo)] exp [jKy (y � yo)] exp [�jK2(z � d)]dKxdKy (35)

where b can be either x; y; or z. Likewise, the values x; y; z from a by directed source at point
xo; yo; d are given by

Eb (x;y; z) =
1

4�2

Z
1

�1

Z
1

�1

eGby exp [jKx(x� xo)] exp [jKy (y � yo)] exp [�jK2(z � d)] dKxdKy (36)

and again b can be either x; y; or z. These equations can be evaluated by the method of
stationary phase and integrated over the extent of each basis function to give the �elds radiated
by that basis function in the presence of the grounded dielectric slab (ref. 13). After this
evaluation has been done and the resulting equations are converted to spherical coordinates, the
far-�eld components due to a single bx directed current mode are

Emn
� (r; �; �) =

Zo

2�

�
exp (�jKor)

r

�
exp (jK2d) cos �

K1Ko cos � sin (K1d)

Tm
Fmn
x

�
Kx;Ky

�
(37)

Emn
� (r; �; �) =

Zo

2�

�
exp (�jKor)

r

�
exp (jK2d) cos �

�K2
o sin � sin (K1d)

Te
Fmn
x

�
Kx;Ky

�
(38)

where Kx and Ky are evaluated at the stationary phase points

Kx = �Ko sin � cos �

Ky = �Ko sin � sin �

)
(39)

Similarly, the �elds radiated by a single by directed current mode are given by

Emn
� (r; �; �) =

Zo

2�

�
exp (�jKor)

r

�
exp (jK2d) cos �

K1Ko sin � sin (K1d)

Tm
Fmn
y

�
Kx;Ky

�
(40)

Emn
� (r; �; �) =

Zo

2�

�
exp (�jKor)

r

�
exp (jK2d) cos �

K2
o cos � sin (K1d)

Te
Fmn
y

�
Kx;Ky

�
(41)

where Kx and Ky are the same as in equation (39). By using equations (37) to (41) in
equation (33), we can determine the left side of equation (25).

After the impedance matrix and the excitation vector have been calculated, the simultaneous
equations can be solved for the unknown current coe�cients. Then, the scattered �elds can be

7



calculated by a summation of the radiated �elds from each mode on the patch. If the patch is
rectangular, this process is straightforward. However, if the patch is some other shape, additional

steps are needed to model it properly.

Consider the irregular patch shown in �gure 1. To predict the scattering from this patch, �rst

enclose it within a rectangle. The impedance matrix and excitation vector can be calculated for

this rectangular patch. A shape function is introduced that is equal to 1 for each mode that

has its center point inside the irregularly shaped patch and equal to 0 if the center point of

the mode is outside the irregularly shaped patch. The set of simultaneous equations can also

be modi�ed to consider only the modes for which the shape function is equal to 1. Thus, the

boundary of the irregularly shaped patch is approximated by a rectangular grid or \stair step."

As the number of subdivisions increases, the approximation to the true boundary of the patch
improves. However, as the number of subdivisions increases, the time required to compute and

solve the impedance matrix increases as well.

Results

Computer programs have been written to solve the matrix equation (25). These programs
are listed in the appendix. The �rst program computes the elements of the impedance matrix

by numerical integration. As mentioned previously, only the �rst row of each submatrix is

calculated. The rest can be �lled in by rearranging the �rst row. Also, because the Zxy and

Zyx submatrices are related, only the Zxy submatrix is calculated. The impedance matrix is

then stored in a data �le. The second program reads in the impedance matrix from the �le and

calculates the excitation vector for the given angle of incidence. The system of equations is solved

and the electromagnetic scattering is calculated at the same angle. If scattering information is

required over a band of frequencies, the third computer program reads in and arranges impedance

matrices for several frequencies and computes the scattering at a given incidence angle as a

function of frequency. It is necessary to compute only the impedance matrix at a few widely

spaced frequencies because the impedance matrix terms are slow to change as a function of

frequency. The impedance matrix for other frequencies can be found by an interpolation of each

impedance matrix element. Newman and Forrai (ref. 11) have used this approach successfully

with entire-domain basis functions.

To ensure that the computer programs are correct, comparisons are shown in �gure 2 for

the calculated and measured data presented by Newman and Forrai (ref. 11) and the calculated

results from the subdomain technique. Because both the entire-domain basis functions used in

reference 11 and the subdomain basis functions described here model the patch shape accurately,

the calculated results from each technique should agree. The number of subdivisions here was

chosen to be M = N = 12, which is adequate for modeling the patch across the frequency

band. If frequency were further increased, more patch subdivisions would be necessary. Figure 2

shows the impedance matrix that was calculated through numerical integration at frequency

steps of 400 MHz and that was interpolated at frequencies between these steps. A quadratic

interpolation technique was used here as well as for the following results. Close agreement

between the calculated results can be seen in �gure 2; the only slight di�erences are at the peaks

of the curves. Also, a slight o�set in frequency is noted between the two calculations. However,

this o�set is not uncommon when two techniques are compared and is likely attributable to

minor di�erences in the computer codes. The measured results shown in �gure 2 agree well

with the calculated results in some areas and disagree in others. Again, a slight frequency shift

is noted when compared with the calculated results; this shift may indicate physical tolerances

of the patch size, substrate thickness, or substrate dielectric parameters. At some points, the

measured data agree better with the data from the subdomain technique; at other points, the

measured data agree better with those from the entire-domain technique. In some areas, the

8



measured data do not agree with any calculated results; rapid 
uctuations of the measured data
in these instances suggest a problem with the measurement or calibration of the radar data.

Next, the shape function was included in the computer programs and two di�erent circular
microstrip patch antennas were modeled. In �gure 3 calculated results for a circular patch
modeled with subdomain basis functions are compared with results calculated by Aberle and
Pozar (ref. 6) with entire-domain basis functions. The impedance matrix case for the subdomain
basis function was calculated at 500-MHz steps and was interpolated elsewhere. For entire-
domain basis functions, the patch boundary is a perfect circle; for the subdomain basis functions,
the patch boundary only approximates a circle. As before, a slight frequency shift is noted
between the two approaches. This shift can be attributed to slight di�erences between the two
computer codes and the subdomain approximation of a circular boundary. The frequency shift
increases as the frequency increases and is expected, as the di�erence between the true and
approximated boundary is larger electrically as frequency increases. If the frequency shift is
ignored, the two results are similar across the frequency band, especially from 2 to 4.5 GHz.
Approximation of a circular boundary in the subdomain calculation may explain the slight
di�erences in the relative power levels.

A second circular patch was modeled and compared with results from entire-domain calcu-
lations and with measured data. The entire-domain calculations and the measured data were
supplied by Aberle, Pozar, and Birtcher (ref. 14) and are shown in �gure 4. The agreement
is fairly good between the subdomain, entire-domain, and measured data. Again, a slight fre-
quency shift in the data is noted, as are slight di�erences in the values at the resonant peaks.
For both patches, the number of subdivisions was chosen to be M = N = 12. More subdivisions
were used for the latter patch to improve the agreement, but little improvement was noted.

Two other shapes, an equilateral triangle and a trapezoid, have been modeled with subdomain
basis functions. As before, the impedance matrices were calculated at 500-MHz steps and were
interpolated at other frequencies. For these two shapes no entire-domain basis function results
have been reported. The measured data were collected in the Experimental Test Range at the
Langley Research Center.

The calculated and measured results for the triangular microstrip patch antenna are shown in
�gure 5. As before, the number of subdivisions was chosen to beM = N = 12. As in all previous
cases, a slight frequency shift is evident in the data and the peak values of the data are slightly
di�erent. The same rapid 
uctuations in the measured data as in �gure 2 are observed from
9 to 13 GHz; these 
uctuations are caused by imperfections in the measurement and calibration
process. The measured versus calculated results for the trapezoidal microstrip patch are shown
in �gure 6. Because the trapezoid is larger than the earlier examples, the number of subdivisions
of the patch was changed to M = 10 and N = 20. Other combinations of M and N were tried
with little change in the results.

The results in this case are not as good as in the previous cases. The shift in frequency
between the calculated and measured data shown in �gure 6 is larger than those in the previous
cases. The relative power levels, however, are quite close for most peaks, although a large
di�erence is evident at approximately 7.3 GHz. Rapid 
uctuations in the measured data at that
point suggest a measurement problem as the cause of the discrepancy.

Conclusions

A subdomain moment method technique has been developed to examine the scattering prop-
erties of microstrip patch antennas. Antennas of virtually any shape may now be analyzed with
this technique merely by changing the shape function that de�nes the outer antenna boundary.
Results were presented for rectangular, circular, triangular, and trapezoidal microstrip patch an-
tennas. In all cases, slight shifts in frequency between subdomain, entire-domain, and measured
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data were noted, as were slight di�erences in power level at the response peaks. The sub-

domain calculations have, however, predicted the correct general scattering from all the patches

examined.

NASA Langley Research Center

Hampton, VA 23681-0001

September 30, 1992
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Appendix

Computer Programs That Solve Matrix Equation (25)

Evaluation of Zxx; Zyy; and Zxy Submatrices

The following program computes the �rst row of the Zxx; Zyy; and Zxy submatrices by

numerical integration. The remaining terms of the impedance matrix are then �lled and the

matrix is stored in a data �le.

ccccc Patch Impedance Matrix

ccccc Subdomain Basis Functions

ccccc

program IMPEDANCE

parameter(mm=12,nn=12,mmp1=(mm+1),nnp1=(nn+1))

parameter(nmax1=(mm*nnp1),nmax2=(mmp1*nn),nmax=(nmax1+nmax2))

real x(mmp1),y(nnp1),Lx,Ly,dx,dy,dx2,dy2,Dxy,d

real Ko,fr,pi,pi2,s1,s2,epo,muo

real B2,A2,DELTY2,FACTY2,FACTY1,FY2

real alpha,ca,sa,deltyr,deltyi,YI1,YI2,ANG(60)

integer NQ2,NUM,NS(60),Con(3)

complex cj,er,Ke,tempx,tempy,P(60),FY1

complex Gxx,Gxy,Gyy,sxx,sxy,syy,Txx,Tyy,Txy

complex K,K1,K2,Tm,Te,N1,N2,D1,D2,C1,sd

complex ZZ(nmax,nmax),DELTY1

complex zxx(mmp1,nnp1,mmp1,nnp1),zxy(mmp1,nnp1,mmp1,nnp1)

complex zyx(mmp1,nnp1,mmp1,nnp1),zyy(mmp1,nnp1,mmp1,nnp1)

complex axx(mmp1,nnp1),axy(mmp1,nnp1),ayy(mmp1,nnp1)

complex bxx(mmp1,nnp1),bxy(mmp1,nnp1),byy(mmp1,nnp1)

DIMENSION U1(3),U2(10),R1(3),R2(10),U(13),R(13)

EQUIVALENCE (U1(1),U(1)),(U2(1),U(4)),(R1(1),R(1)),(R2(1),R(4))

DATA U1/.11270166537925,.5,.88729833462074/,U2/.01304673574141,.06

1746831665550,.16029521585048,.28330230293537,.42556283050918,.5744

23716949081,.71669769706462,.83970478414951,.93253168334449,.986953

326425858/,R1/.27777777777777,.44444444444444,.27777777777777/,R2/.

403333567215434,.07472567457529,.10954318125799,.13463335965499,.14

5776211235737,.14776211235737,.13463335965499,.10954318125799,.0747

62567457529,.03333567215434/

CCCCC

ccccc ALL DIMENSIONS IN METERS

ccccc

cj=(0.0,1.0)

pi=2.0*asin(1.0)

pi2= pi/2.0

epo= 8.854E-12

muo= pi*(4.0E-07)

er= cmplx(2.2,-0.0022)

fr= 6.0E+09

Ko= 2.0*pi*fr*sqrt(muo*epo)

Ke= 2.0*pi*fr*csqrt(muo*epo*er)

d= 0.00159

Lx= 0.023
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Ly= 0.023

dx=(2.0*Lx)/(float(mmp1))

dy=(2.0*Ly)/(float(nnp1))

dx2=dx/2.0

dy2=dy/2.0

Dxy= dx*dx*dy*dy

do 3 i=1,mmp1

x(i)= -Lx + (float(i)*dx)

3continue

do 5 i=1,nnp1

y(i)= -Ly + (float(i)*dy)

5 continue

write(6,10)Ko,Ke,Lx,Ly

10 format('Ko=',f7.3,' Ke=',f7.3,f7.3,' Lx=',f9.6,' Ly=',f9.6)

zxx=(0.0,0.0)

zxy=(0.0,0.0)

zyx=(0.0,0.0)

zyy=(0.0,0.0)

axx=(0.0,0.0)

axy=(0.0,0.0)

ayy=(0.0,0.0)

ccccc

ccccc Calculate Integrals for the Z matrix

ccccc

ccccc Define Limits for K integration

ccccc

P(1)= (0.0,0.0)

P(2)= cmplx((0.1*Ko),(0.1*Ko))

P(3)= cmplx((1.0*Ko),(0.1*Ko))

P(4)= cmplx((1.1*real(Ke)),(0.1*Ko))

P(5)= cmplx((1.1*real(Ke)),(0.0))

P(6)= cmplx((1.5*real(Ke)),0.0)

P(7)= cmplx((4.0*real(Ke)),0.0)

P(8)= cmplx((5.0*real(Ke)),0.0)

do 11 n=9,60

P(n)= float(n-8)*6000.0

11 continue

NS=50

NS(1)=10

NS(2)=20

NS(3)=20

NS(4)=10

NS(5)=10

NS(6)=40

NS(7)=20

NS(8)=100

ccccc

ccccc THETA Integration first

ccccc

B2=pi2

A2=0.0
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NQ2=6

DELTY2= (B2-A2)/FLOAT(NQ2)

C*FIND INITIAL VALUE FOR THETA INTERVAL.

DO 200 II=1,NQ2

YI2 = float(II - 1)

FY2 = A2 + (YI2*DELTY2)

CEVALUATE FUNCTIONS AT 10 POINTS PER THETA INTERVAL.

DO 180 L2=1,10

FACTY2=R(3+L2)

alpha=FY2 + (U(3+L2)*DELTY2)

ca=cos(alpha)

sa=sin(alpha)

C

C NOW START K INTEGRATION

C

Con=0

Txx=(0.0,0.0)

Txy=(0.0,0.0)

Tyy=(0.0,0.0)

DO 150 IS=1,59

bxx=(0.0,0.0)

bxy=(0.0,0.0)

byy=(0.0,0.0)

DELTY1= (P(IS+1)-P(IS))/FLOAT(NS(IS))

C*FIND INITIAL VALUE FOR K INTERVAL.

DO 100 JJ=1,NS(IS)

YI1 = float(JJ - 1)

FY1 = P(IS) + (YI1*DELTY1)

CEVALUATE FUNCTIONS AT 10 POINTS PER K INTERVAL.

DO 80 L1=1,10

FACTY1=R(3+L1)

C

C Find K and evaluate Green's functions

C

K=FY1 + (U(3+L1)*DELTY1)

K1=csqrt((Ke**2)-(K**2))

if (aimag(K1).gt.0.0) K1 = conjg(K1)

K2=csqrt((Ko**2)-(K**2))

if (aimag(K2).gt.0.0) K2 = conjg(K2)

sd=csin(K1*d)

Te= (K1*ccos(K1*d)) + (cj*K2*csin(K1*d))

Tm= (er*K2*ccos(K1*d)) + (cj*K1*csin(K1*d))

C1= ((cj*377.0*sd)/(Ko*Te*Tm))

Gxx= (-C1) * ((K1*K2*ca*ca*Te) + (Ko*Ko*sa*sa*Tm))

Gyy= (-C1) * ((K1*K2*sa*sa*Te) + (Ko*Ko*ca*ca*Tm))

Gxy= C1 * ((Ko*Ko*ca*sa*Tm) - (K1*K2*ca*sa*Te))

C

C Evaluate Basis functions for each mode

C

D1= dx2*K*ca

N1= csin(D1)/D1
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D2= dy2*K*sa

N2= csin(D2)/D2

C

C multiply by K for polar integration

C

sxx= Gxx*K*FACTY1*Dxy*(N1**4)*(N2**2)

sxy= Gxy*K*FACTY1*Dxy*(N1**3)*(N2**3)

syy= Gyy*K*FACTY1*Dxy*(N1**2)*(N2**4)

C

C SET p and q = 1 and then vary m and n

C

do 15 m=1,mmp1

tempx= ccos(K*ca*(x(m)-x(1)))

do 12 n=1,nnp1

tempy= ccos(K*sa*(y(n)-y(1)))

bxx(m,n)=(sxx*tempx*tempy) + bxx(m,n)

byy(m,n)=(syy*tempx*tempy) + byy(m,n)

12 continue

15 continue

C

C Take abs() of dx and dy terms and do the sign later

C

do 25 m=1,mmp1

tempx= csin(K*ca*abs(x(1)-(x(m)-dx2)))

do 20 n=1,nnp1

tempy= csin(K*sa*abs(y(1)-dy2-y(n)))

bxy(m,n)= (-1.0*sxy*tempx*tempy) + bxy(m,n)

20 continue

25 continue

ccccc write(6,75)K,(sxx/FACTY1)

75 format(f12.5,f12.5,f15.12,f15.12)

80 continue

100 continue

Txx=(bxx(1,1)*DELTY1) + Txx

Txy=(bxy(1,1)*DELTY1) + Txy

Tyy=(byy(1,1)*DELTY1) + Tyy

axx= (bxx*DELTY1*FACTY2) + axx

axy= (bxy*DELTY1*FACTY2) + axy

ayy= (byy*DELTY1*FACTY2) + ayy

ccccc write(6,120)P(IS+1),(bxx(1,1)*DELTY1),Txx

120 format(f10.2,f10.2,f13.10,f13.10,f13.10,f13.10)

if (cabs(bxx(1,1)*DELTY1).lt.(0.02*cabs(Txx))) Con(1)=1

if (cabs(bxy(1,1)*DELTY1).lt.(0.02*cabs(Txy))) Con(2)=1

if (cabs(byy(1,1)*DELTY1).lt.(0.02*cabs(Tyy))) Con(3)=1

if ((Con(1).eq.1).and.(Con(2).eq.1).and.(Con(3).eq.1)

&.and.(IS.gt.16)) goto 170

150 continue

170 continue

ccccc write(6,175)(alpha*180.0/pi),P(IS+1)

175 format(f12.2,f12.2,f12.2)

180 continue
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200continue

202format(f8.3,f8.3,f8.3,f8.3,f8.3,f8.3)

C

C Multiply by 4 for 1 quadrant integration

C Divide by 2pi*2pi for inverse Fourier transform

C Multiply by -1 for E in = - E scat

C

axx= ((-1.0/(pi*pi))*axx*DELTY2)

axy= ((-1.0/(pi*pi))*axy*DELTY2)

ayy= ((-1.0/(pi*pi))*ayy*DELTY2)

C

C Now arrange the other matrices

C

do 310 ip=1,mm

do 310 iq=1,nnp1

irow= ((ip-1)*nnp1) + iq

do 300 m=1,mm

do 300 n=1,nnp1

icol= ((m-1)*nnp1) + n

if ((ip.eq.1).and.(iq.eq.1)) then

zxx(ip,iq,m,n)= axx(m,n)

else

mp=iabs(ip-m)+1

nq=iabs(iq-n)+1

zxx(ip,iq,m,n)= axx(mp,nq)

endif

ZZ(irow,icol)= zxx(ip,iq,m,n)

300 continue

310 continue

C

do 360 ip=1,mm

do 360 iq=1,nnp1

irow= ((ip-1)*nnp1) + iq

do 350 m=1,mmp1

do 350 n=1,nn

icol= ((m-1)*nn) + n + nmax1

s1=sign(1.0,(x(ip)-(x(m)-dx2)))

s2=sign(1.0,(y(iq)-dy2-y(n)))

if ((ip.eq.1).and.(iq.eq.1)) then

zxy(ip,iq,m,n)= axy(m,n)*s1*s2

else

mp=iabs(ip-m)+1

if (m.lt.ip) mp=mp+1

nq=iabs(iq-n)+1

if (n.lt.iq) nq=nq-1

zxy(ip,iq,m,n)= axy(mp,nq)*s1*s2

endif

ZZ(irow,icol)= zxy(ip,iq,m,n)

zyx(m,n,ip,iq)=zxy(ip,iq,m,n)

350 continue

360 continue
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C

do 380 ip=1,mmp1

do 380 iq=1,nn

irow= ((ip-1)*nn) + iq + nmax1

do 375 m=1,mm

do 375 n=1,nnp1

icol= ((m-1)*nnp1) + n

ZZ(irow,icol)= zyx(ip,iq,m,n)

375 continue

380 continue

C

do 400 ip=1,mmp1

do 400 iq=1,nn

irow= ((ip-1)*nn) + iq + nmax1

do 400 m=1,mmp1

do 400 n=1,nn

icol= ((m-1)*nn) + n + nmax1

if ((ip.eq.1).and.(iq.eq.1)) then

zyy(ip,iq,m,n)= ayy(m,n)

else

mp=iabs(ip-m)+1

nq=iabs(iq-n)+1

zyy(ip,iq,m,n)= ayy(mp,nq)

endif

ZZ(irow,icol)= zyy(ip,iq,m,n)

400 continue

C

ccccc do 1200 m=1,nmax

ccccc do 1200 n=1,nmax

ccccc write(6,1100)m,n,ZZ(m,n)

ccccc 1100 format(i4,i4,f12.8,f12.8)

ccccc 1200 continue

open(12,FILE='IMP',STATUS='NEW',FORM='UNFORMATTED')

write(12)fr,Lx,dx,Ly,dy,d,Ko,Ke,er,x,y

write(12)ZZ

close(12)

2000 stop

end

ccccc

Solution for a Given Incidence Angle

The following program reads an impedance matrix data �le, computes the excitation vector,

and computes backscatter for a given incidence angle. The shape function is introduced and

only those modes with a shape function equal to 1 are retained in the solution.

ccccc Microstrip Patch Matrix Inversion Code

parameter (mm=12,nn=12,mmp1=(mm+1),nnp1=(nn+1))

parameter (nmax1=(mm*nnp1),nmax2=(mmp1*nn),nmax=(nmax1+nmax2))

real Lx,dx,Ly,dy,Ko,fr,x(mmp1),y(nnp1),px,py

real pi,dx2,dy2,Theta,Phi,Kx,Ky,K2,F1,F2

integer ipvt(nmax),Sx(mm,nnp1),Sy(mmp1,nn)
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complex er,Ke,axx,bxx,res,Rs,Di,Et,Ep,Ph

complex cj,K1,Tm,Te,Ptx,Pty,Ppx,Ppy,Etx,Ety,Epx,Epy

complex fac(nmax,nmax),wk(nmax)

complex ZZ(nmax,nmax),V(nmax),Vx(nmax1),Vy(nmax2)

complex ZZN(nmax,nmax),VN(nmax),Vmid,Jmid

complex J(nmax)

character*8 fn

equivalence (Vx(1),V(1)),(Vy(1),V(nmax1+1))

DIMENSION U1(3),U2(10),R1(3),R2(10),U(13),R(13)

EQUIVALENCE (U1(1),U(1)),(U2(1),U(4)),(R1(1),R(1)),(R2(1),R(4))

DATA U1/.11270166537925,.5,.88729833462074/,U2/.01304673574141,.06

1746831665550,.16029521585048,.28330230293537,.42556283050918,.5744

23716949081,.71669769706462,.83970478414951,.93253168334449,.986953

326425858/,R1/.27777777777777,.44444444444444,.27777777777777/,R2/.

403333567215434,.07472567457529,.10954318125799,.13463335965499,.14

5776211235737,.14776211235737,.13463335965499,.10954318125799,.0747

62567457529,.03333567215434/

C

read(5,1)fn

1 format(A)

open(12,file=fn,status='OLD',form='UNFORMATTED')

read(12)fr,Lx,dx,Ly,dy,d,Ko,Ke,er,x,y

read(12)ZZ

close(12)

write(6,2)fr,Lx,Ly,d,Ko,Ke,er

2 format(e10.3,f10.6,f10.6,f10.6,5f10.4)

dx2=dx/2.0

dy2=dy/2.0

pi= 2.0*asin(1.0)

cj= (0.0,1.0)

CCCCC

CCCCC Find Vx and Vy excitation for angle Theta and Phi

CCCCC

Theta= 60.1*(pi/180.0)

Phi= 0.1*(pi/180.0)

Et= 1.0

Ep= 0.0

Kx= -Ko*sin(Theta)*cos(Phi)

Ky= -Ko*sin(Theta)*sin(Phi)

K1= csqrt((Ke**2)-(Kx**2)-(Ky**2))

if (aimag(K1).gt.0.0) K1= conjg(K1)

K2= Ko*cos(Theta)

Tm= (er*K2*ccos(K1*d)) + (cj*K1*csin(K1*d))

Te= (K1*ccos(K1*d)) + (cj*K2*csin(K1*d))

Ptx= (K1*Ko*cos(Phi)*csin(K1*d))/Tm

Pty= (K1*Ko*sin(Phi)*csin(K1*d))/Tm

Ppx= -(Ko*Ko*sin(Phi)*csin(K1*d))/Te

Ppy= (Ko*Ko*cos(Phi)*csin(K1*d))/Te

ccccc

Di= -(4.0*pi)/(cj*2.0*pi*fr*pi*(4.0E-07))

Etx= (377.0/(2.0*pi))*cexp(cj*K2*d)*cos(Theta)*Ptx
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Ety= (377.0/(2.0*pi))*cexp(cj*K2*d)*cos(Theta)*Pty

Epx= (377.0/(2.0*pi))*cexp(cj*K2*d)*cos(Theta)*Ppx

Epy= (377.0/(2.0*pi))*cexp(cj*K2*d)*cos(Theta)*Ppy

ccccc

F1=dx*dy*(sin(Ky*dy2)/(Ky*dy2))*((sin(Kx*dx2)/(Kx*dx2))**2)

F2=dx*dy*(sin(Kx*dx2)/(Kx*dx2))*((sin(Ky*dy2)/(Ky*dy2))**2)

do 4 ip=1,mm

do 3 iq=1,nnp1

irow= ((ip-1)*nnp1) + iq

Ph= cexp(cj*((-Kx*x(ip))+(-Ky*y(iq))+(Ky*dy2)))

Vx(irow)= Di * ((Etx*Et)+(Epx*Ep)) *F1*Ph

if ((ip.eq.6).and.(iq.eq.7)) Vmid=Vx(irow)

ccccc write(6,10)ip,iq,Vx(irow)

3 continue

4 continue

do 7 ip=1,mmp1

do 6 iq=1,nn

irow= ((ip-1)*nn) + iq

Ph= cexp(cj*((-Kx*x(ip))+(-Ky*y(iq))+(Kx*dx2)))

Vy(irow)= Di * ((Ety*Et)+(Epy*Ep)) *F2*Ph

ccccc write(6,10)ip,iq,Vy(irow)

6 continue

7 continue

10 format(i3,i3,f12.8,f12.8)

CCCCC

CCCCC Now define shape function

CCCCC

Sx=1

Sy=1

do 550 m=1,mm

do 540 n=1,nnp1

dist=sqrt((x(m)**2)+((y(n)-dy2)**2))

if (dist.gt.0.023) Sx(m,n)=0

540 continue

550 continue

do 580 m=1,mmp1

do 570 n=1,nn

dist=sqrt(((x(m)-dx2)**2)+(y(n)**2))

if (dist.gt.0.023) Sy(m,n)=0

570 continue

580 continue

write(6,605)((Sx(m,n),m=1,mm),n=nnp1,1,-1)

605 format(12I1)

write(6,606)((Sy(m,n),m=1,mmp1),n=nn,1,-1)

606 format(13I1)

irownew=0

do 650 ip=1,mm

do 640 iq=1,nnp1

icolnew=0

if (Sx(ip,iq).eq.0) goto 640

irow= ((ip-1)*nnp1) + iq
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irownew=irownew+1

VN(irownew)=V(irow)

do 620 m=1,mm

do 610 n=1,nnp1

if (Sx(m,n).eq.0) goto 610

icol= ((m-1)*nnp1) + n

icolnew=icolnew+1

ZZN(irownew,icolnew)= ZZ(irow,icol)

610 continue

620 continue

do 630 m=1,mmp1

do 625 n=1,nn

if (Sy(m,n).eq.0) goto 625

icol= ((m-1)*nn) + n + nmax1

icolnew=icolnew+1

ZZN(irownew,icolnew)= ZZ(irow,icol)

625 continue

630 continue

640 continue

650 continue

do 700 ip=1,mmp1

do 690 iq=1,nn

icolnew=0

if (Sy(ip,iq).eq.0) goto 690

irow= ((ip-1)*nn) + iq + nmax1

irownew=irownew+1

VN(irownew)= V(irow)

do 660 m=1,mm

do 655 n=1,nnp1

if (Sx(m,n).eq.0) goto 655

icol= ((m-1)*nnp1) + n

icolnew=icolnew+1

ZZN(irownew,icolnew)= ZZ(irow,icol)

655 continue

660 continue

do 680 m=1,mmp1

do 670 n=1,nn

if (Sy(m,n).eq.0) goto 670

icol= ((m-1)*nn) + n + nmax1

icolnew= icolnew+1

ZZN(irownew,icolnew)= ZZ(irow,icol)

670 continue

680 continue

690 continue

700 continue

J=(0.0,0.0)

write(6,720)irownew,icolnew

720 format(i4,i4)

750 call l2acg(irownew,ZZN,nmax,VN,1,J,fac,ipvt,wk)

ccccc do 900 m=1,mm

ccccc do 890 n=1,nnp1
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ccccc if (Sx(m,n).eq.0) goto 890

ccccc mn=((m-1)*nnp1)+n

ccccc write(6,800)m,n,Jx(mn),cabs(Jx(mn))

800 format(i3,i3,f12.8,f12.8,f12.8)

890 continue

900 continue

ccccc do 1000 m=1,mmp1

ccccc do 990 n=1,nn

ccccc if (Sy(m,n).eq.0) goto 990

ccccc mn=((m-1)*nn)+n

ccccc write(6,950)m,n,Jy(mn),cabs(Jy(mn))

950 format(i3,i3,f12.8,f12.8,f12.8)

990 continue

1000 continue

CCCCC

CCCCC Now find RCS at angle (Theta,Phi)

CCCCC

irow=0

Et=(0.0,0.0)

Ep=(0.0,0.0)

do 1100 ip=1,mm

do 1050 iq=1,nnp1

if (Sx(ip,iq).eq.0) goto 1050

irow= irow+1

if ((ip.eq.6).and.(iq.eq.7)) Jmid=J(irow)

Ph= cexp(cj*((-Kx*x(ip))+(-Ky*y(iq))+(Ky*dy2)))

Et= Et+(J(irow)*Etx*F1*Ph)

Ep= Ep+(J(irow)*Epx*F1*Ph)

1050 continue

1100 continue

do 1200 ip=1,mmp1

do 1150 iq=1,nn

if (Sy(ip,iq).eq.0) goto 1150

irow= irow+1

Ph= cexp(cj*((-Kx*x(ip))+(-Ky*y(iq))+(Kx*dx2)))

Et= Et+(J(irow)*Ety*F2*Ph)

Ep= Ep+(J(irow)*Epy*F2*Ph)

1150 continue

1200 continue

1300 format(i3,i3,f12.8,f12.8)

RCS= 4.0*pi*cabs(Et)*cabs(Et)

RCS= 10.0*alog10(RCS)

write(6,1500)(fr/(1.0E+09)),RCS,(Jmid/Vmid)

1400 format('Fr=',f6.2,' RCS = ',f12.6,' dBsm')

1500 format(f8.4,f12.6,2x,e12.6,2x,e12.6)

2000 continue

stop

end

ccccc
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Solution for a Given Incidence Angle as a Function of Frequency

The following program reads impedance matrix data �les and computes backscatter at a

given incidence angle as a function of frequency. Quadratic interpolation is used to �nd the

impedance matrix if the frequency of interest is between that of two data �les. The shape

function is included to ensure that only the appropriate modes are retained in the solution.

program BANDWIDTH

parameter (mm=12,nn=12,mmp1=(mm+1),nnp1=(nn+1))

parameter (nmax1=(mm*nnp1),nmax2=(mmp1*nn),nmax=(nmax1+nmax2))

parameter (NF=9)

real Lx,dx,Ly,dy,Ko,fr,x(mmp1),y(nnp1)

real pi,dx2,dy2,Theta,Phi,Kx,Ky,K2,F1,F2

real f(NF),ZR(NF,nmax,nmax),ZI(NF,nmax,nmax),epo,muo

real tempr(nmax,nmax),tempi(nmax,nmax),px1,px2,py1,py2

real deltx,delty,ax,facty,factx,Tq,Tp,Tm1,Tn

integer ipvt(nmax),Sx(mm,nnp1),Sy(mmp1,nn)

complex er,Ke,Di,Et,Ep,Ph

complex cj,K1,Tm,Te,Ptx,Pty,Ppx,Ppy,Etx,Ety,Epx,Epy

complex fac(nmax,nmax),wk(nmax),ass,bxx,res

complex ZZ(nmax,nmax),V(nmax),RR(nmax,nmax)

complex J(nmax),JN

complex ZZN(nmax,nmax),VN(nmax),Jmid,Vmid

character*12 fn

DIMENSION U1(3),U2(10),R1(3),R2(10),U(13),R(13)

EQUIVALENCE (U1(1),U(1)),(U2(1),U(4)),(R1(1),R(1)),(R2(1),R(4))

DATA U1/.11270166537925,.5,.88729833462074/,U2/.01304673574141,.06

1746831665550,.16029521585048,.28330230293537,.42556283050918,.5744

23716949081,.71669769706462,.83970478414951,.93253168334449,.986953

326425858/,R1/.27777777777777,.44444444444444,.27777777777777/,R2/.

403333567215434,.07472567457529,.10954318125799,.13463335965499,.14

5776211235737,.14776211235737,.13463335965499,.10954318125799,.0747

62567457529,.03333567215434/

C

do 20 IF=1,NF

if (IF.eq.1) fn='IMP6.0'

if (IF.eq.2) fn='IMP6.5'

if (IF.eq.3) fn='IMP7.0'

if (IF.eq.4) fn='IMP7.5'

if (IF.eq.5) fn='IMP8.0'

if (IF.eq.6) fn='IMP8.5'

if (IF.eq.7) fn='IMP9.0'

if (IF.eq.8) fn='IMP9.5'

if (IF.eq.9) fn='IMP10.0'

if (IF.eq.10) fn='IMP10.5'

if (IF.eq.11) fn='IMP11.0'

if (IF.eq.12) fn='IMP11.5'

if (IF.eq.13) fn='IMP12.0'

if (IF.eq.14) fn='IMP12.5'

if (IF.eq.15) fn='IMP13.0'

if (IF.eq.16) fn='IMP13.5'
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if (IF.eq.17) fn='IMP14.0'

open(12,file=fn,status='OLD',form='UNFORMATTED')

read(12)fr,Lx,dx,Ly,dy,d,Ko,Ke,er,x,y

read(12)ZZ

close(12)

f(IF)= fr

do 10 m=1,nmax

do 10 n=1,nmax

ZR(IF,m,n)= real(ZZ(m,n))

ZI(IF,m,n)= aimag(ZZ(m,n))

10 continue

20 continue

dx2=dx/2.0

dy2=dy/2.0

pi= 2.0*asin(1.0)

cj= (0.0,1.0)

epo= 8.854E-12

muo= pi*(4.0E-07)

CCCCC

CCCCC Start Freq. Loop

CCCCC

do 2000 IF=2000,6000,25

fr= (float(IF)/1000.0)*(1.0E+09)

Ko= 2.0*pi*fr*sqrt(epo*muo)

Ke= 2.0*pi*fr*csqrt(er*epo*muo)

ipt= -1

call inter(NF,NF,f,nmax,ZR,2,fr,tempr,ipt,ierr)

ipt= -1

call inter(NF,NF,f,nmax,ZI,2,fr,tempi,ipt,ierr)

ZZ= cmplx(tempr,tempi)

CCCCC

CCCCC Find Vx and Vy excitation for angle Theta and Phi

CCCCC

Theta= 60.0*(pi/180.0)

Phi= 0.01*(pi/180.0)

Et= 1.0

Ep= 0.0

Kx= -Ko*sin(Theta)*cos(Phi)

Ky= -Ko*sin(Theta)*sin(Phi)

K1= csqrt(cmplx(Ke**2)-(Kx**2)-(Ky**2))

if (aimag(K1).gt.0.0) K1= conjg(K1)

K2= Ko*cos(Theta)

Tm= (er*K2*ccos(K1*d)) + (cj*K1*csin(K1*d))

Te= (K1*ccos(K1*d)) + (cj*K2*csin(K1*d))

Ptx= (K1*Ko*cos(Phi)*csin(K1*d))/Tm

Pty= (K1*Ko*sin(Phi)*csin(K1*d))/Tm

Ppx= -(Ko*Ko*sin(Phi)*csin(K1*d))/Te

Ppy= (Ko*Ko*cos(Phi)*csin(K1*d))/Te

ccccc

Di = -(4.0*pi)/(cj*2.0*pi*fr*muo)

Etx= (377.0/(2.0*pi))*cexp(cj*K2*d)*cos(Theta)*Ptx
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Ety= (377.0/(2.0*pi))*cexp(cj*K2*d)*cos(Theta)*Pty

Epx= (377.0/(2.0*pi))*cexp(cj*K2*d)*cos(Theta)*Ppx

Epy= (377.0/(2.0*pi))*cexp(cj*K2*d)*cos(Theta)*Ppy

ccccc

F1=dx*dy*(sin(Ky*dy2)/(Ky*dy2))*((sin(Kx*dx2)/(Kx*dx2))**2)

F2=dx*dy*(sin(Kx*dx2)/(Kx*dx2))*((sin(Ky*dy2)/(Ky*dy2))**2)

do 455 ip=1,mm

do 454 iq=1,nnp1

irow= ((ip-1)*nnp1) + iq

Ph= cexp(cj*((-Kx*x(ip))+(-Ky*y(iq))+(Ky*dy2)))

V(irow)= Di * ((Etx*Et)+(Epx*Ep)) *F1*Ph

if ((ip.eq.6).and.(iq.eq.7)) Vmid=V(irow)

ccccc write(6,470)ip,iq,V(irow)

454 continue

455 continue

do 465 ip=1,mmp1

do 460 iq=1,nn

irow= ((ip-1)*nn) + iq + nmax1

Ph= cexp(cj*((-Kx*x(ip))+(-Ky*y(iq))+(Kx*dx2)))

V(irow)= Di * ((Ety*Et)+(Epy*Ep)) *F2*Ph

ccccc if ((ip.eq.6).and.(iq.eq.6)) Vmid=V(irow)

ccccc write(6,470)ip,iq,V(irow)

460 continue

465 continue

470 format(i3,i3,f12.8,f12.8)

CCCCC

CCCCC Now define shape function

CCCCC

500 Sx=1

Sy=1

do 550 m=1,mm

do 540 n=1,nnp1

dist=sqrt((x(m)**2)+((y(n)-dy2)**2))

if (dist.gt.0.023) Sx(m,n)=0

540 continue

550 continue

do 580 m=1,mmp1

do 570 n=1,nn

dist=sqrt(((x(m)-dx2)**2)+(y(n)**2))

if (dist.gt.0.023) Sy(m,n)=0

570 continue

580 continue

if (IF.eq.2000) write(6,605)((Sx(m,n),m=1,mm),n=nnp1,1,-1)

605 format(12I1)

if (IF.eq.2000) write(6,606)((Sy(m,n),m=1,mmp1),n=nn,1,-1)

606 format(13I1)

irownew=0

do 650 ip=1,mm

do 640 iq=1,nnp1

icolnew=0

if (Sx(ip,iq).eq.0) goto 640
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irow= ((ip-1)*nnp1) + iq

irownew=irownew+1

VN(irownew)=V(irow)

do 620 m=1,mm

do 610 n=1,nnp1

if (Sx(m,n).eq.0) goto 610

icol= ((m-1)*nnp1) + n

icolnew=icolnew+1

ZZN(irownew,icolnew)= ZZ(irow,icol)

610 continue

620 continue

do 630 m=1,mmp1

do 625 n=1,nn

if (Sy(m,n).eq.0) goto 625

icol= ((m-1)*nn) + n + nmax1

icolnew=icolnew+1

ZZN(irownew,icolnew)= ZZ(irow,icol)

625 continue

630 continue

640 continue

650 continue

do 700 ip=1,mmp1

do 690 iq=1,nn

icolnew=0

if (Sy(ip,iq).eq.0) goto 690

irow= ((ip-1)*nn) + iq + nmax1

irownew=irownew+1

VN(irownew)= V(irow)

do 660 m=1,mm

do 655 n=1,nnp1

if (Sx(m,n).eq.0) goto 655

icol= ((m-1)*nnp1) + n

icolnew=icolnew+1

ZZN(irownew,icolnew)= ZZ(irow,icol)

655 continue

660 continue

do 680 m=1,mmp1

do 670 n=1,nn

if (Sy(m,n).eq.0) goto 670

icol= ((m-1)*nn) + n + nmax1

icolnew= icolnew+1

ZZN(irownew,icolnew)= ZZ(irow,icol)

670 continue

680 continue

690 continue

700 continue

J=(0.0,0.0)

750 call l2acg(irownew,ZZN,nmax,VN,1,J,fac,ipvt,wk)

CCCCC

CCCCC Now find RCS at angle (Theta,Phi)

CCCCC
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irow=0

Et=(0.0,0.0)

Ep=(0.0,0.0)

do 1100 ip=1,mm

do 1050 iq=1,nnp1

if (Sx(ip,iq).eq.0) goto 1050

irow= irow+1

ccccc write(6,1040)float(ip),float(iq),cabs(J(irow))

1040 format(f8.2,f8.2,f14.5)

if ((ip.eq.6).and.(iq.eq.7)) Jmid=J(irow)

Ph= cexp(cj*((-Kx*x(ip))+(-Ky*y(iq))+(Ky*dy2)))

Et= Et+(J(irow)*Etx*F1*Ph)

Ep= Ep+(J(irow)*Epx*F1*Ph)

1050 continue

1100 continue

do 1200 ip=1,mmp1

do 1150 iq=1,nn

if (Sy(ip,iq).eq.0) goto 1150

irow= irow+1

ccccc write(6,1040)float(ip),float(iq),cabs(J(irow))

ccccc if ((ip.eq.6).and.(iq.eq.6)) Jmid=J(irow)

Ph= cexp(cj*((-Kx*x(ip))+(-Ky*y(iq))+(Kx*dx2)))

Et= Et+(J(irow)*Ety*F2*Ph)

Ep= Ep+(J(irow)*Epy*F2*Ph)

1150 continue

1200 continue

1300 format(i3,i3,f12.8,f12.8)

RCS= 4.0*pi*cabs(Et)*cabs(Et)

ccccc RCS= 4.0*pi*cabs(Ep)*cabs(Ep)

RCS= 10.0*alog10(RCS)

JN=Jmid/Vmid

write(6,1500)(fr/(1.0E+09)),RCS,JN

1400 format('Fr=',f6.2,' RCS = ',f12.6,' dBsm')

1500 format(f8.4,f12.6,2x,e12.6,2x,e12.6)

ccccc write(6,1600)Vmid,Jmid

1600 format(4e14.6)

2000 continue

stop

end

ccccc
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Figure 1. Geometry of an arbitrarily shaped microstrip patch antenna.
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Figure 2. Comparison between subdomain, entire-domain, and measured scattering from a
rectangular microstrip patch antenna. Lx = 1:88 cm; Ly = 1:30 cm; d = 0:158 cm; "r = 2:17;

Loss tangent = 0:001; �i; �i = 60�; 45�.
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Figure 3. Comparison between subdomain and entire-domain calculated scattering from a
circular microstrip patch antenna. Patch radius = 2:30 cm; d = 0:159 cm; "r = 2:20;

Loss tangent = 0:0009; �i; �i = 60�; 0�.
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Figure 4. Comparison between subdomain; entire-domain, and measured scattering from a
circular microstrip patch antenna. Patch radius = 0:71 cm; d = 0:07874 cm; "r = 2:20;

Loss tangent = 0:0009; �i; �i = 63�; 0�.
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Figure 5. Comparison between subdomain and measured scattering from an equilateral triangle
microstrip patch antenna. Triangle side = 1:4 cm; d = 0:07874 cm; "r = 2:33; Loss tangent

= 0:001; �i; �i = 60�; 180�.
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Figure 6. Comparison between subdomain and measured scattering from a trapezoidal
microstrip patch antenna. Lx = 0:7 cm; Ly = 1:4 cm; d = 0:07874 cm; "r = 2:33; Loss

tangent = 0:001; �i; �i = 60�; 180�.

32


